Universal Choke Control — Simulation Model
# Universal Choke Control — Simulation Model
# Implements a simplified dynamic version of the Universal Choke Equation:
# X(t) = S_dot(t) / (D(t) + ε)
# Where:
# S_dot(t) = weighted entropy production (stress + acceleration + latency)
# D(t) = dissipation capacity (headroom + control authority + redundancy)
import numpy as np
import matplotlib.pyplot as plt
# --- Simulation Parameters ---
np.random.seed(42)
T = 300 # time steps
epsilon = 1e-6 # small stabilizer
dt = 0.1
# --- Generate Dynamic Inputs ---
time = np.arange(0, T * dt, dt)
# Stress components (simulate load growth + random disturbances)
stress = 0.5 + 0.003 * time + 0.05 * np.sin(0.2 * time) + 0.02 * np.random.randn(T)
# Acceleration component (rate of stress change)
acceleration = np.gradient(stress, dt)
# Latency component (network / response lag fluctuations)
latency = 0.3 + 0.05 * np.sin(0.1 * time) + 0.02 * np.random.randn(T)
# Weighted entropy production
S_dot = 0.5 * stress + 0.3 * np.abs(acceleration) + 0.2 * latency
# Dissipation capacity (headroom + control authority + redundancy)
headroom = 1.2 - 0.002 * time # slowly decreasing capacity
control_authority = 0.6 + 0.05 * np.cos(0.15 * time)
redundancy = 0.4 + 0.02 * np.sin(0.25 * time)
D = headroom + control_authority + redundancy
# --- Universal Choke Index ---
X = S_dot / (D + epsilon)
# --- Classification Zones ---
safe_threshold = 0.7
red_threshold = 1.0
# --- Plot Choke Index ---
plt.figure()
plt.plot(time, X)
plt.axhline(safe_threshold)
plt.axhline(red_threshold)
plt.xlabel("Time")
plt.ylabel("Choke Index X(t)")
plt.title("Universal Choke Control Simulation")
plt.show()
# --- Summary Output ---
max_X = np.max(X)
time_of_peak = time[np.argmax(X)]
print("Simulation Complete")
print("Maximum Choke Index:", round(float(max_X), 4))
print("Time of Peak:", round(float(time_of_peak), 2))
Comments
Post a Comment