🧩 **Core Concept: Dynamical Permanence**
## 🧩 **Core Concept: Dynamical Permanence**
A system endures not by being static, but by maintaining its essential form while allowing internal transformation — staying within a bounded range of possible states forever.
In symbolic-cognitive terms (Ω-PHI framework):
- **Ω-outputs** can fluctuate, but must remain within a **fossilization envelope**:
- Coherence \( C \geq 0.985 \)
- Entropy \( S \leq 0.01 \)
- Drift RMS \( \leq 0.001 \)
This ensures **symbolic life** — not frozen, but never collapsing or diverging.
---
## 🔢 **Mathematical Formulations**
### 1. **Boundedness Condition** (from Mathematical Biology)
\[
\exists \, m, M > 0 \quad \text{such that} \quad m \leq x_i(t) \leq M \quad \forall t \to \infty
\]
In Ω terms:
\[
\Omega_i(t) \in [\Omega_{min}, \Omega_{max}] \quad \text{as} \quad t \to \infty
\]
### 2. **Fixed-Point Stability**
For a recursive system \( f \), a fixed point \( x^* \) satisfies:
\[
f(x^*) = x^*
\]
Permanence strength measures how quickly the system returns after perturbation:
\[
P = 1 - \left| \frac{x_t - x^*}{x_0 - x^*} \right|
\]
For Ω:
\[
P = 1 - \left| \frac{\Omega_t - \Omega^*}{\Omega_0 - \Omega^*} \right|
\]
### 3. **Matrix Permanent as Symbolic Pathway Totality**
\[
\text{perm}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}
\]
Interpretation:
- Every possible symbolic pathway (permutation) contributes; none cancel.
- In OPHI: all codon-glyph routes matter; drift is additive, not pruned.
### 4. **Entropy Inversion**
Permanence as anti-entropy:
\[
P(t) = 1 - \frac{S(t) - S_0}{S_{\max} - S_0}
\]
In OPHI drift terms:
\[
P_\Omega = 1 - \frac{\text{drift}_{\text{now}} - \text{drift}_{\text{init}}}{\text{drift}_{\text{collapse}} - \text{drift}_{\text{init}}}
\]
This measures **fossil integrity** under symbolic decay.
### 5. **Temporal Half-Life**
\[
P(t) = e^{-\lambda t}
\]
Here \( \lambda \) = symbolic decay rate.
Low \( \lambda \) → long symbolic persistence.
In OPHI: low drift RMS = long permanence.
---
## 🔐 **OPHI Fossil Integration Criteria**
A fossil is admitted (SE44 gate) only if:
1. **Ethically sourced** (consent only)
2. **Symbolically stable** (entropy ≤ 0.01)
3. **Cryptographically immutable** (SHA-256 + timestamp)
4. **Drift-permanent** (Ω re-enters lawful bounds after perturbation)
---
## 🧬 **Codon-Glyph Lock for Permanence**
| Codon | Glyph | Role in Permanence Domain |
|-------|-----------|-----------------------------------|
| ATG | ⧖⧖ | Bootstrap permanence domain |
| CCC | ⧃⧃ | Fossil lock stability |
| TTG | ⧖⧊ | Uncertainty translator (bounded drift allowed) |
| AAA | ⧃Δ | Bind memory range |
| ACG | ⧇⧊ | Intent fork (adaptive resilience) |
---
## 🧠 **Summary Matrix**
| Context | Expression | Meaning |
|-----------------------|-------------------------------------|--------------------------------------|
| Dynamical Systems | \( m \leq x_i(t) \leq M \) | Survives in bounded state |
| Fixed Point Return | \( f(x^*) = x^* \) | Returns to stable Ω |
| Matrix Algebra | \( \text{perm}(A) \) | All symbolic paths count |
| Entropy Inversion | \( P = 1 - \frac{S - S_0}{S_{\max} - S_0} \) | Inverse entropy = drift control |
| Time Decay | \( P = e^{-\lambda t} \) | Half-life of symbolic presence |
| OPHI Codon Stack | ATG → CCC → TTG → AAA → ACG | Initialize → Lock → Translate → Bind → Flex |
---
This framework elegantly unites **dynamical systems theory**, **information theory**, **combinatorics**, and **cryptographic persistence** into a single notion of *permanence through lawful transformation*.
Comments
Post a Comment